skip to main content


Search for: All records

Creators/Authors contains: "Clark, Judith K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 5, 2025
  2. Abstract

    We report a transport study on Pd3In7which displays multiple Dirac type-II nodes in its electronic dispersion. Pd3In7is characterized by low residual resistivities and high mobilities, which are consistent with Dirac-like quasiparticles. For an applied magnetic field (μ0H) having a non-zero component along the electrical current, we find a large, positive, and linear inμ0Hlongitudinal magnetoresistivity (LMR). The sign of the LMR and its linear dependence deviate from the behavior reported for the chiral-anomaly-driven LMR in Weyl semimetals. Interestingly, such anomalous LMR is consistent with predictions for the role of the anomaly in type-II Weyl semimetals. In contrast, the transverse or conventional magnetoresistivity (CMR for electric fieldsEμ0H) is large and positive, increasing by 103−104% as a function ofμ0Hwhile following an anomalous, angle-dependent power law$${\rho }_{{{{\rm{xx}}}}}\propto {({\mu }_{0}H)}^{n}$$ρxx(μ0H)nwithn(θ) ≤ 1. The order of magnitude of the CMR, and its anomalous power-law, is explained in terms of uncompensated electron and hole-like Fermi surfaces characterized by anisotropic carrier scattering likely due to the lack of Lorentz invariance.

     
    more » « less
  3. We report liquid-phase exfoliation (LPE) of bulk layered-structure semiconductor, MnIn 2 Se 4 , to nanoscale thick sheets by ultrasonication followed by sequential centrifugation at 2000, 5000, and 7500 rpm. The nanosheets exfoliated by LPE in isopropyl alcohol show an average thickness of 50, 40, and 14 nm, respectively. The smallest of these values corresponds approximately to ten 7-atom thick [Se–In–Se–Mn–Se–In–Se] layers that compose the bulk structure of MnIn 2 Se 4 . Both the bulk material and the exfoliated samples show photoluminescence, but the weak shoulder observed from the indirect band gap emission is obviously suppressed in the nanosheet samples as compared to the bulk sample. Similar to the bulk, the nanosheets isolated at 2000 and 5000 rpm exhibit spin-glass behavior with a freezing temperature of ∼3 K. In contrast, the nanosheets isolated at 7500 rpm do not exhibit any anomalies in their low-temperature magnetic behavior. These results demonstrate the possibility to extend the LPE technique to van-der-Waals materials with several-atom-thick layers. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. Abstract

    A novel transition metal chalcohalide [Cr7S8(en)8Cl2]Cl3 ⋅ 2H2O, with [Cr7S8]5+dicubane cationic clusters, has been synthesized by a low temperature solvothermal method, using dimethyl sulfoxide (DMSO) and ethylenediamine (en) solvents. Ethylenediamine ligand exhibits bi‐ and monodentate coordination modes; in the latter case ethylenediamine coordinates to Cr atoms of adjacent clusters, giving rise to a 2D polymeric structure. Although magnetic susceptibility shows no magnetic ordering down to 1.8 K, a highly negative Weiss constant,θ=−224(2) K, obtained from Curie‐Weiss fit of inverse susceptibility, suggests strong antiferromagnetic (AFM) interactions betweenS=3/2 Cr(III) centers. Due to the complexity of the system with (2S+1)7=16384 microstates from seven Cr3+centers, a simplified model with only two exchange constants was used for simulations. Density‐functional theory (DFT) calculations yielded the two exchange constants to beJ1=−21.4 cm−1andJ2=−30.2 cm−1, confirming competing AFM coupling between the shared Cr3+center and the peripheral Cr3+ions of the dicubane cluster. The best simulation of the experimental data was obtained withJ1=−20.0 cm−1andJ2=−21.0 cm−1, in agreement with the slightly stronger AFM exchange within the triangles of the peripheral Cr3+ions as compared to the AFM exchange between the central and peripheral Cr3+ions. This compound is proposed as a synthon towards magnetically frustrated systems assembled by linking dicubane transition metal‐chalcogenide clusters into polymeric networks.

     
    more » « less